PROGRAMME PROJECT REPORT

Master's in Biochemistry Programme (2 Year Programme in accordance with NEP-2020)

School of Sciences

U. P. Rajarshi Tandon Open University, Prayagraj

Contents

1. Master's Degree Programme 2. M.Sc.- Biochemistry 2.1Programme's mission and objectives 2.2Relevance of the program with Mission and Goals 2.3Nature of prospective target group of learners 2.4Appropriateness of Programme to be conducted in ODL mode to acquire specific skills & competence 2.5Instructional Design 2.6Instructional Delivery Mechanism 2.7Procedure for admissions, curriculum transaction and evaluation 2.8Requirement of the laboratory support and Library Resources 2.9Cost estimate of the programme and the provisions 2.10 Quality assurance mechanism and expected programme outcomes APPENDIX-I: Detailed Programme structure & syllabus APPENDIX-II: Guidelines for Research Project/Dissertation

1

1. Master's Degree Programme

The National Education Policy (NEP) 2020 envisions a new vision that enable an individual to study one or more specialized areas of interest at a deep level, and also develop capabilities across a range of disciplines including sciences, social sciences, arts, humanities, languages, as well as professional, technical, and vocational subjects. The NEP 2020 focuses on the formulation of expected learning outcomes for all higher education programmes. It states that "National Higher Education Qualifications Framework (NHEQF)" shall be align with the National Skills Qualifications Framework (NSQF) to ease the integration of vocational education into higher education. It also points out that higher education qualifications leading to a degree/diploma/certificate shall be described by the NHEQF in terms of Outcome Based Education (OBE).

The design of M.Sc.- **Biochemistry** programme in line with NHEQF offers opportunities and avenues to learn core subjects but also to explore additional avenues of learning beyond the core subjects for holistic development of a learner.

The uniform grading system will also enable potential employers in assessing the performance of the learner. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on learner's performance in examinations, guidelines framed by the UGC are followed. Hence, adoption of NHEQF helps to overcome the gap between university degree and employability by introducing skills and competencies in the graduates.

2. M.Sc.- Biochemistry Programme

The structure and duration of postgraduate programme of Master's in Biochemistry in accordance with NEP 2020 includes multiple exit options within this period, with appropriate certifications:

- Level 8: A **Bachelor' Degree (Research)** for 4 year programme after completing 4th year of 4-year B.Sc. programme **OR PG Diploma in Biochemistry** after completing 1styear (2 semesters) of study of M.Sc. programme.
- Level 9: A Master in Science (Biochemistry) program after 2 years (4 semesters) of study;

2.1 Programme Mission & Objectives

In line with the mission of the University to provide flexible learning opportunities to all, particularly to those who could not join regular colleges or universities owing to social, economic and other constraints, the 2-year Post-Graduate Programme in Biochemistry aims at providing holistic and value based knowledge and guidance to promote scientific temper in everyday life. The program offers a platform to the learners to fulfill the eligible criteria in various scientific jobs in government and private sector.

The Master of Biochemistry Programme aims at the following objectives:

- Develop a broad academic and practical literacy in cell biology, nutritional chemisty, enzymology, bioinformatics, microbiology and biotechnology. Study of clinical biochemisty will be very useful in alaysis and measuring of biochemical parameters that will be useful in diagnosis and medial care.
- Provide strong core training so that graduates can adapt easily to changes and new demands from industry.
- Enable students to understand not only how to apply certain methods, but when and why they are appropriate.

- Integrate fields within zoology, botanty, microbiology and chemsity in biochemistry is very useful to understand the physiology of liviingh being and their metabolic processes.
- Expose students to real-world problems in the classroom and through experiential learning.

2.2 Relevance of the Programme with Mission and Goals

The 2-year Post-Graduate Programme in M.Sc.- Biochemistry is designed with the objective of equipping learners to cope with the emerging trends and challenges in the scientific domain. In congruence with goals of the University the Programme also focuses to provide skilled manpower to the society to meet global demands. The Programme is designed in such a manner so that a successful learner can go for higher studies as well as join the medical and pharmaceutical industry.

2.3 Nature of Prospective Target Group of Learners

The Program is targeted to all individuals looking to earn a post graduation degree for employment, further higher education, promotion in career, professional development.

2.4 Appropriateness of Programme to be conducted in ODL mode to acquire specific skills & competence

	Learning outcomes after Level 8			
Learning	Elements of	Level 8		
Outcome	the descriptor	Bachelor' Degree (Research)		
S		OR		
		PG Diploma in Biochemistry		
LO 1	Knowledge and understanding	 advanced knowledge about a specialized field of enquiry, with depth in one or more fields of learning within a broad multidisciplinary/interdisciplinary context. a coherent understanding of the established methods and techniques of research and enquiry applicable to the chosen fields of learning. 		
LO 2	Skills required to perform and accomplish tasks	 a range of cognitive and technical skills required for performing and accomplishing complex tasks relating to the chosen fields of learning, cognitive and technical skills relating to the established research methods and techniques, 		
LO 3	Application of knowledge and skills	 apply the acquired advanced technical and/or theoretical knowledge and a range of cognitive and practical skills to analyse the quantitative and qualitative data gathered drawing on a wide range of sources for identifying problems and issues relating to the biochemistry apply advanced knowledge relating to research methods to carryout research and investigations to formulate evidence-based solutions to complex and unpredictable problems. 		
LO 4	Generic learning outcomes	 listen carefully, read texts and research papers analytically and present complex information in a clear and concise manner to different groups/audiences, communicate technical information and explanations, and the findings/results of the research studies present in a concise manner one's views on the relevance and applications of the findings of research and evaluation studies in the context of emerging developments and issues. 		

		 pursue self-paced and self- directed learning to upgrade knowledge and skills that will help accomplish complex tasks and pursue higher level of education and research. problematize, synthesize and articulate issues and design research proposals, define problems, formulate appropriate and relevant research questions,
LO 5	Constitutional, humanistic, ethical and moral values	 embrace and practice constitutional, humanistic, ethical, and moral values in one's life. adopt objective, unbiased, and truthful actions in all aspects of work and professional practice.
LO 6	Employment ready skills, and entrepreneurshi p skills and mindset	 managing complex technical or professional activities or projects, requiring the exercise of full personal responsibility for output of own work as well as for the outputs of the group as a member of the group/team. exercising supervision in the context of work having unpredictable changes.

	Learning outcomes after Level 9			
Learning Outcome s	Elements of the descriptor	Level 9 (Master's in - Biochemistry)		
LO 1	Knowledge and understanding	 advanced knowledge about a specialized field of enquiry with a critical understanding of the emerging developments. advanced knowledge and understanding of the research principles, methods, and techniques applicable professional practice. procedural knowledge required for performing and accomplishing complex and specialized professional tasks relating to teaching, and research and development. 		
LO 2	Skills required to perform and accomplish tasks	 advanced cognitive and technical skills required for performing and accomplishing complex tasks. advanced cognitive and technical skills required for evaluating research findings and designing and conducting relevant research that contributes to the generation of new knowledge, specialized cognitive and technical skills relating to a body of knowledge and practice to analyse and synthesize complex information and problems. 		
LO 3	Application of knowledge and skills			
LO 4	Generic learning outcomes	 listen carefully, read texts and research papers analytically and present complex information in a clear and concise manner to different groups/audiences, communicate, in a well-structured manner, technical information and explanations, and the findings/ results of the 		

		research studies,
		• meet one's own learning needs relating to the chosen fields
		of learning, work/vocation, and an area of professional
		practice,
		• pursue self-paced and self- directed learning to upgrade
		knowledge and skills, including research-related skills,
		required to pursue higher level of education and research.
LO 5	Constitutional,	• embrace and practice constitutional, humanistic, ethical and
	humanistic,	moral values in one's life,
	ethical and moral	• adopt objective and unbiased actions in all aspects of work
	values	and professional practice,
		• participate in actions to address environmental protection and
		sustainable development issues,
LO 6	Employment	• adapting to the future of work and responding to the demands
	ready skills, and	of the fast pace of technological developments and innovations
	entrepreneurship	that drive shift in employers' demands for skills, particularly
	skills and	with respect to transition towards more technology-assisted
	mindset	work involving the creation of new forms of work and rapidly
		changing work and production processes.
		• exercising full personal responsibility for output of own work
		as well as for group/ team outputs and for managing work that
		are complex and unpredictable requiring new strategic
		approaches.

2.5 Instructional Design

2.5.1 2-year M.Sc.- Biochemistry Programme Structure

The University follows the credit system in all its programmes. One credit is equal to 30 hours of learner's study time which is equivalent to 15 lectures in conventional system. To earn a Master's Degree, a learner has to earn 80 credits in minimum four semesters (two years) with 20 credits per semester. For earning 80 credits, a learner has to go through the following Programme Structure:

Level	Year	Sem	Core Course 1	Core Course 2	Core Course 3	Research component	Practical Lab/ Dissertation with viva voce	Total credit
8	1	1 st	4	4	4	4	4	20
		2 nd	4	4	4	4	4	20
9	2	3 rd	4	4	4	4	4	20
		4 th	4	4	4	4	4	20
Total credit					80			

Programme Structure of M.Sc.- Biochemistry under NHEQF

Explanation of terms used for categorization of courses:

- A. Course 1 to 3:A course, which should compulsorily be studied by a learner as a core requirement is termed as a Core course.
- B. **Research Component:** The components included in this category are Basics in Research (PGBR-01), Mini Project (PGMP-02), Basic Research Tools (PGRT-03).
- C. Practical Lab: Lab based on courses discussed in theory papers.
- D. Industrial Training/ Survey/ Research Project/ Field Work/Apprenticeship/ Dissertation/Internship: A course designed to acquire special/advanced knowledge,

such as supplement study/support study to a project work, and a learner studies such a course on his own with an advisory support by a counsellor/faculty member.

- 2.5.2 Course curriculum: The details of syllabus is given in Appendix-I
- **2.5.3 Language of Instruction:** SLM is provided in English. However, learner can write assignment and give Term End Examination (TEE) either in Hindi or English.

2.5.4 Duration of the Programme

Minimum duration in years: 02 Maximum duration in years: 04

2.5.5 Faculty & Support Staff

Professor (2), Assistant Professor (5) and support staff (3)

2.6 Instructional Delivery Mechanisms

The Open University system is more learner-oriented, and the student is an active participant in the teaching-learning process. Most of the instructions are imparted through distance rather than face-to-face communication.

The University follows a multi-media approach for instruction. It comprises of:

- self-instructional printed material (Self Learning Material)
- audio and video lectures
- face-to-face counselling
- assignments
- laboratory work
- Project work in some courses
- teleconference/web conference
- Web Enabled Academic Support Portal
- e-GYANSANGAM (Open Educational Repository): http://gyansangam.uprtou.ac.in
- e-GYANARJAN:Its a Learning Management System based on Moodle (<u>http://gyanarjan.uprtou.ac.in</u>) to aid the learner through web conferencing, sharing of learning resources, counselling classes etc.

2.6.1 Self-Learning Material

The Self Learning Material (SLMs) are prepared in line with the UGC guidelines on preparation of SLMs. The prepared study materials are self-instructional in nature.

The course material is divided into blocks. Each block contains a few units. Lessons, which are called Units, are structured to facilitate self-study. The units of a block have similar nature of contents. The first page of each block indicates the numbers and titles of the units comprising the block. In the first block of each course, we start with course introduction. This is followed by a brief introduction to the block. After the block introduction, emphasis is given on contribution of ancient Indian knowledge into that specific course. Next, each unit begins with an introduction to talk about the contents of the unit. The list of objectives are outlined to expect the learning based outcome after working through the unit. This

is followed by the main body of the unit, which is divided into various sections and sub-sections. Each unit is summarized with the main highlights of the contents.

Each unit have several "Check Your Progress" Questions and Terminal Questions /exercises. These questions help the learner to assess his/her understanding of the subject contents. At the end of units, additional references/books/suggested online weblink for MOOCs/Open Educational Resources for additional reading are suggested.

2.6.2 Audio and Video lectures

Apart from SLM, audio and video lectures have been prepared for some courses. The audio-video material is supplementary to print material. The video lectures are available at YouTube channel of university(https://www.youtube.com/channel/UCj2XTEB6iCZwwIqmKw_jzYg).

2.6.3 Counselling Classes

The face to face (F2F) counselling classes are conducted at head quarter and study centers. The purpose of such a contact class is to answer some of questions and clarify the doubts of learner which may not be possible through any other means of communication. Well experienced counsellors at study centers provide counselling and guidance to the learner in the courses that (s)he has chosen for study. The counselling sessions for each of the courses will be held at suitable intervals throughout the whole academic session. The time table for counselling classes are displayed at head quarter as well as by the coordinator of study center, however, attending counselling sessions is not compulsory. It is noted that to attend the counselling sessions, learner has to go through the course materials and note down the points to be discussed as it is not a regular class or lectures.

2.6.4 Assignments

The purpose of assignments is to test the comprehension of the learning material that learner receives and also help to get through the courses by providing self-feedback to the learner. The course content given in the SLM will be sufficient for answering the assignments.

Assignments constitute the continuous evaluation component of a course. The assignments are available at the SLM section of the home page of university website. In any case, learner has to submit assignment before appearing in the examination for any course. The assignments of a course carry 30% weightage while 70% weightage is given to the term-end examination (TEE). The marks obtained by learner in the assignments will be counted in the final result. Therefore, It is advised to take assignments seriously. However, there will be no written assignments for Lab courses.

2.6.5 Laboratory Work

Laboratory courses are an integral component of the M.Sc. programme. While designing the curricula for laboratory courses, particular care has been taken to weed out experiments not significant to the present-day state of the discipline. Importance has been given to the utility of an experiment with respect to real life experience, development of experimental skills, and industrial applications. It is

planned to phase the laboratory courses during suitable periods (such as summer or autumn vacations) so that in-service persons can take them without difficulty. Laboratory courses worth 2 credits will require full-time presence of the student at the Study Centre for one week continuously. During this time a student has to work for around 60 hours. Around 40 hours would be spent on experimental work and the remaining time will be used for doing calculations, preparations of records, viewing or listening to the video/audio programmes.

2.6.6 Teleconference/Web conference

Teleconference/web conference, using done through ZOOM/webex in form of online special counselling sessions is another medium to impart instruction to and facilitate learning for a distance learner. The students concerned would be informed about the teleconferencing schedule and the place where it is to be conducted by sending bulk SMS.

2.6.7 Web Enabled Academic Support Portal

The University also provide Web Enabled Academic Support Portal to access the course materials, assignments, and other learning resources.

2.6.8 e-GYANSANGAM

The e-GYAMSANGAM (UPRTOU-OER REPOSITORY) is an open access platform for educational resources that rely on the concept of 5Rs namely; Reuse, Revise, Remix, Retain and Redistribute. Uttar Pradesh Rajarshi Tandon Open University in support with Commonwealth Educational Media Centre for Asia initiated the implementation of philosophy behind the NEP-2020 to provide equitable use of technology to support learners (SDG4). This not only ensure inclusive and equitable quality education opportunities but also provide faculty to repurpose high quality open educational resources (OER) such that innovative, interactive and collaborative learning environment is built. UPRTOU believes the philosophy of Antyoday (reaching to last person of the society) and facilitate the learner by providing Self Learning Materials, Lecture Notes, Audio/video Lectures, Assignments, Course materials etc. through face-to-face mode as well as distance mode. This e-GYANSANGAM depository will fulfill the educational facilities through equitable use of technology to the learners.

Objectives

- To provide low-cost access model for learners. To foster the policy of reaching to unreached.
- To break down barriers of affordability and accessibility of educational resources.
- To give faculty the ability to customize course materials for learners.
- To provide equal access to affordable technical, vocational and higher education resources (SDG 4.3).
- To provide ubiquitous access to anyone. This will facilitate the quick availability of educational resources and reduces time.
- To supplement Self Learning Material (SLM).
- To reduce the mentor-mentee gap as depository provide access to number of local access as well as global access to educational resources.

2.6.9 e-GYANARJAN: It's a Learning Management System based on Moodle (<u>http://gyanarjan.uprtou.ac.in</u>) to aid the learner through web conferencing, sharing of learning resources, counselling classes etc.

2.6.10 Learner Support Service Systems

(a) Study Centre

A Study Centre has following major functions:

- (i) **Counselling:** Counselling is an important aspect of Open University System. Face to face contact-cum-counselling classes for the courses will be provided at the Study Centre. The detailed programme of the contact-cum-counselling sessions will be sent to the learner by the Coordinator of the Study Centre. In these sessions learner will get an opportunity to discuss with the Counsellors his/her problems pertaining to the courses of study.
- (ii) Evaluation of Assignments: The evaluation of Tutor Marked Assignments (TMA) will be done by the Counsellors at the Study Centre. The evaluated assignments will be returned to the learner by the Coordinator of Study Centre with tutor comments and marks obtained in TMAs. These comments will help the learner in his/her studies.
- (iii) **Library:** Every Study Centre will have a library having relevant course materials, reference books suggested for supplementary reading prepared for the course(s).
- (iv) **Information and Advice:** The learner will be given relevant information about the courses offered by the University. Facilities are also provided to give him/her guidance in choosing courses.
- (v) **Interaction with fellow-students:** In the Study Centre learner will have an opportunity to interact with fellow students. This may lead to the formation of self-help groups.

(b) Learner Support Services (LSS)

The University has formed an LSS cell at the head quarter. The LSS cell coordinate with the Study Centre to get rid of any problem faced by the learner.

2.7 Procedure for admissions, curriculum transaction and evaluation

2.7.1 Admission Procedure

- (a) The detailed information regarding admission will be given on the UPRTOU website and on the admission portal. Learners seeking admission shall apply online.
- **(b)** Direct admission to 2-year M.Sc. (**Biochemistry**) program is offered to the interested candidates.

Entry Eligibility:

Level 8: Bachelar degree in concern subject (B.Sc. (Bio)/B.Sc. (Honors) with chemistry as one of the subject) OR Biochemistry/Microbiology/Biotechnology/ at B.Sc. Level OR Any 4 year Graduate Degree in Medical Sciences/Science. **Level 9:** Students who successfully completed the Bachelors degree (Research) or PG Diploma in Biochemistry at level 8 will get admission in 2nd year of M.Sc. (Biochemistry) program in accordance with NEP-2020.

(c) **Programme Fee:** Rs. 12000 / year. The fee is deposited through online admission portal only.

2.7.2 Evaluation

The evaluation consists of two components: (1) continuous evaluation through assignments, and (2) term-end examination. Learner must pass both in continuous evaluation as well as in the term-end examination of a course to earn the credits assigned to that course. For each course there shall be one written Terminal Examination. The evaluation of every course shall be in two parts that is 30% internal weightage through assignments and 70% external weightage through terminal exams.

(a) Theory course	Max. Marks
Terminal Examination	70
Assignment	30
Total	100
(b) Practical course:	Max. Marks
Terminal Practical Examination	100

Marks of Terminal Practical Examination shall be awarded as per following scheme:

i.	Write up /theory work	30	
ii.	Viva-voce	30	
iii.	Execution/Performance/Demo	onstration	20
iv.	Lab Record	20	

The following 10-Point Grading System for evaluating learners' achievement is used for CBCS programmes:

Letter Grade	Grade Point	% Range
O (Outstanding)	10	91-100
A+ (Excellent)	9	81-90
A (Very Good)	8	71-80
B+ (Good)	7	61-70
B (Above Average)	6	51-60
C (Average)	5	41-50
P (Pass)	4	36-40
NC (Not Completed)	0	0-35
Ab (Absent)	0	
Q	Qualified	Applicable only for Non-Credit
NQ	Not Qualified	courses

10-Point Grading System in the light of UGC-CBCS Guidelines

Learner is required to score at least a 'P' grade (36% marks) in both the continuous evaluation (assignments) as well as the term-end examination. In the overall computation also, learner must get at least a 'P' grade in each course to be eligible for the M. Sc. degree.

Computation of CGPA and SGPA

(a) Following formula shall be used for calculation of CGPA and SGPA

For jth semester	where,
SGPA (Sj) = Σ (Ci *Gi)/ Σ Ci	Ci = number of credits of the ith course in jth semester Gi= grade point scored by the learner in the ith course in jth semester.
$CGPA = \Sigma (Cj *Sj) / \Sigma Cj$	where, Sj = SGPA of the jth semester Cj = total number of credits in the jth semester

The CGPA and CGPA shall be rounded off up to the two decimal points. (For e.g., if a learner obtained 7.2345, then it will be written as 7.23 or if s(he) obtained 7.23675 then it be will written as 7.24)

CGPA will be converted into percentage according to the following formula: Equivalent Percentage = CGPA * 9.5

(b) Award of Division

The learner will be awarded division according to the following table:

Division	Classification
1 st Division	6.31 or more and less than 10 CGPA
2 nd Division	4.73 or more and less than 6.31 CGPA
3 rd Division	3.78 or more and less than 4.73 CGPA

2.7.3 Multiple Entry and Multiple Exit options

The 2-year M.Sc. programme is an Outcome-Based Education (OBE) for qualifications of different types. The qualification types and examples of title/nomenclature for qualifications within each type are indicated in Table 1.

	Table 1					
Level	Qualification	Programme	Entry Option	Exit option		
	title	duration				
	B.Sc.	Programme	Bachelar degree in concern subject (B.Sc.	Exit Awarded		
8	(Research) OR	duration: First	(Bio)/B.Sc. (Honors) with chemistry as one	with Bachelor'		
	PG Diploma in	year (first two	of the subject) OR Biochemistry/	Degree		
	Biochemistry	semesters) of the	Microbiology/ Biotechnology/ at B.Sc.	(Research) for		
		M.Sc.	Level OR Any 4 year Graduate Degree in	4 year		
		programme	Medical Sciences	programme		
				OR PG		
				Diploma in		
				Biochemistry		
	Master in	Programme	Level 8 Bachelor' Degree (Research) for 4	Exit awarded		
9	(Biochemistry)	duration: First	year programme OR	with Master's		
		two years (first	PG Diploma in Biochemistry	in		
		four semesters)		(Biochemistry)		
		of the of the				
		M.Sc.				
		programme				

2.8 Requirement of the laboratory support and Library Resources

The practical sessions are held in the science laboratories of the Study Centre. In these labs, the learner will have the facility to use the equipment and consumables relevant to the syllabus. The SLM, supplementary text audio and video material of the various courses of the program is available through the online study portal of the University. The University also has a subscription of National Digital Library to provide the learners with the ability to enhance access to information and knowledge of various courses of the programme.

2.9 Cost estimate of the programme and the provisions

2-year M.Sc. programme consists of 15 theory courses, 4 laboratory courses and research activities. One course is of 4 credits which consist of approx. 6 units. The total approximated expenditure on the development of 15 courses is:

S.	Item	Cost per Unit	Total cost
No.		(writing &	(Rs.)
		editing)	
1	Total no. of units in 12 courses =	7500	675000
	15*12=90		
2	BOS Meetings etc.	100000	100000
		Total	775000

2.10 Quality assurance mechanism and expected programme outcomes

- (a) **Quality assurance mechanism:** The program structure is developed under the guidance of the Board of studies comprising external expert members of the concerned subjects followed by the School board. The program structure and syllabus is approved by the Academic Council of the University. The course structure and syllabus is reviewed time to time according to the feedback received from the stakeholders and societal needs.
- The Centre for Internal Quality Assurance will monitor, improve and enhance effectiveness of the program through the following:
 - ✓ Annual academic audit
 - ✓ Feedback analysis for quality improvement
 - ✓ Regular faculty development programs
 - ✓ Standardization of learning resources
 - ✓ Periodic revision of program depending upon the changing trends by communicating to the concerned school

Knowledge	PO1	To grasp the ability of biochemical process and functioning of		
and		living being systems in concern to their structure and		
understanding		functions.		
Skills related	PO 2	To adapt the skills and understanding of the concepts of		
to		enzyme kinetics, their behaviour & mechanism, molecular		
specialization		mapping, gene expression and control of DNA transcription in		
		living beings.		
Application	PO 3	To conceptualize and analyze the principle of different		
of knowledge		biochemical changes of various biomolecules with their		
and skills		chemistry in living system		

(b) Expected programme outcomes (POs)

	PO 4	To apply clinical and experimental knowledge for the diagnoses of different kinds of diseases.		
~ .				
Generic	PO 5	Learner will be able to get the job in various fields related to		
learning		medical professions, pharmaceutical industry, biotechnological		
outcomes		industry and community health centre.		
	PO 6	Learner will also be able to improve the quality of life for the		
		human welfare by understanding the principle of living		
		organisms at the molecular level.		

Newly Introduced programme : Yes			
Programme: Master in Science			
Year: NA	Year: NA First Introduction year: 2023		
Programme prerequisites: Bachelar degree in concern subject (B.Sc. (Bio)/B.Sc.			
(Honors) with chemistry as one of the subject) OR			
Biochemistry/Microbiology/Biotechnology/ at B.Sc. Level OR Any 4 year Graduate			
Degree in Medical Sciences/Science.			

APPENDIX-I

<u>Academic Year 2023-24</u> <u>Detailed Programme Structure & Syllabus</u> M.Sc. Biochemistry Programme Structure

Semest	er I	Course Code	Title of papers	Credit	Max. Marks
		PGBCH -101	Cell Biology and Biomolecules	4	100
		PGBCH -102	Analytical Biochemistry	4	100
1 st SEM	1	PGBCH -103	Bioenergetics and Metabolism	4	100
		PGBCH -104N(P)	Practical's based on PGBCH 101,102 and 103	4	100
		PGBR-01N	Basics in Research	4	100
Credit	I semester			20	500
		PGBCH -106	Nutrition and Physiology	4	100
	_	PGBCH -107	Bio Statistics		100
2 nd SEI	M	PGBCH -108	Clinical biochemistry	4	100
		PGBCH -109N(P)	Practical's based on PGBCH 105,106 and 107	4	100
		PGMP-02N	Mini Project	4	100
Credit	II semester	-		20	500
		PGBCH -111	Enzymology and enzyme technology	4	100
atrd on		PGBCH -112	Immunology		100
3 ^{trd} SE	M	PGBCH -113	Basic Biotechnology		100
		PGBCH -114N(P)	Practical's based on PGBCH 109,110 and 111	4	100
		PGRT -03N	Research Tools and Practices	4	100
Credit	III semester			20	500
	Select any o	one group			
Group A		PGBCH-116N	Bio-safety and IPR	4	100
4 ^{rth}		PGBCH -117N/ PGEVS-120N	Environmental Toxicology and Occupational Health Hazardous	4	100
SEM		PGBCH-118N /PGZY-121N	Genetic Engineering	4	100
		PGBCH-119N(P)	Practical's based on PGBCH 114N and 115N	4	100
		1	OR	1	I
	Group B	PGBCH -120N	Microbiology and Toxicology	4	100
		PGBCH -121N	Industrial biotechnology	4	100
		PGBCH -122N	Bioinformatics	4	100
		PGBCH-123 N (P)	Practical's based on PGBCH 114N and 115N	4	100
	Compulsor				
	PGBCH-12 (D)N	Dissertation/Indu	strial training/Internship with Viva Voce	4	100
Credit IV semester				20	500
		Total credit/N		80	2000

Programme	M.Sc. Year: 2023 Semester: I				
	Subject: Biochemistry				
Course Cod	e: PGBCH-101N Course Title: Cell Biology and Biomolecules				
Course Ob					
	iscuss the basics of outline of biochemistry				
	iscuss the structures of prokaryotic and eukaryotic cells				
> To d	iscuss the basic concept of cell organelles and its role in biochemical functions				
> To c	iscuss about cell and different organelles				
Course Ou	tcomes:				
CO 1: Able	to understanding the history and scope of Biochemistry in brief.				
CO 2: Able	to understanding of water properties and its role in living systems.				
CO 3: Learn	the conceptualize the cell structure and its functions				
CO 4: Know	v the structure and functions of various cell organelles.				
CO 5: Also	know the structure and classification of amino acids				
Credits: 4	Type of Course: Core				
Max. Marks	: 100 Min. Passing Marks: 36				
Block 1	Cell and Cell Organelles				
	Introduction to cell:				
TT T T	Cell biology and cell organelles: History of biochemistry, biochemical				
Unit I	organization, architecture of cells, structure of prokaryotic and eukaryotic cell,				
	structure of cell wall and cell membrane.				
Unit II	Cell organelles:				
0 1110 11	Structure and function of different cell organelles mitochondria, nucleus,				
	endoplasmic reticulum, chloroplast, Golgi apparatus, ribosomes, lysosomes,				
	centrioles cytoskeleton.				
Block 2	Block-II: Biomolecules Part I				
	Carbohydrates:				
	Introduction to carbohydrates, monosaccharides-structure, properties and their				
	derivatives, aldose and ketose, stereoisomerism of monosaccharides, acid and				
Unit V	base reaction in monosaccharides, structure of disaccharides and oligosaccharides,				
	types of polysaccharides, function of complex carbohydrate, glycosidic bonds,				
	polysaccharides as energy storage.				
Unit VI	Proteins:				
01110 1 1	Introduction to protein, amino acids, primary, secondary, tertiary and quaternary				
	structures of protein, structure of hemoglobin, proteinprotein interaction, protein				
	interaction with nucleic acid, function of protein and malfunction of protein.				
Block 3	Block-III: Biomolecules Part II				
Unit V	Lipids:				
enit v	Introduction to lipids, types, structure and function of lipids, essential fatty and				
	saturated fatty acid, wax, phospholipids,				
	glycerophospholipidssphingophospholipids, glycolipids, glyceroglycolipids,				
	sphingo-glycolipids, simple lipids, lipid bilayer structure, biological membrane:				
	components and structure.				
Unit VI	Nucleic acids:				
	Introduction to nucleic acid, structure and components of nucleotides, nitrogen				
	bases in nucleotide and nucleosides, nucleic acids, structures and types of RNA,				
	double helix of DNA, Central Dogma, denauration of DNA, nucleic acid				
	I double neura of DivA, Central Dogina, denauration of DivA, nucleic acid				

sequencing, biological function of nucleotides.
Suggested Text Book Readings:
1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International
Edition-2021.
2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular
Biology" S. Chand Publication-2016.
4. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern
Economy Edition, Prentice Hall, India-2002.
5. Satyanarayana U., "Biochemistry" Elsevier India, 2021
Suggested online links:
1. Cell Biology and Bio-molecule: Microprocessor and Its Applications (uprtou.ac.in)
2. Introduction to cell biology: <u>me339_s02.pdf (stanford.edu)</u>
3. Carbohydrates: <u>Notes-C18-121.pdf (latech.edu)</u>
4. Structure of Proteins: Structure and functions of Amino Acids and Proteins
(aiimsrishikesh.edu.in)
5. Nucleic Acid: <u>Biochemistry.pdf (sscasc.in)</u>
This course can be opted as an elective by the students of following subjects: M.Sc.
Botany), M.Sc. (Zoology)
Suggested equivalent online courses (MOOCs) for credit transfer:
Biochemistry of Biomolecules: Biochemistry of Biomolecules - Course (swayam2.ac.in)

Programme:					
~	Subject: Biochemistry				
Course Code: PGBCH-102N Course Title: Analytical Biochemistry					
Course Obj					
	scuss the basics understanding of spectroscopy				
	scuss the role of electrophoreses in biochemical analysis				
🕨 To di	scuss the instrumentation and application of microscopy				
To di	scuss the basic principal of XRD				
Course Out	comes:				
CO 1: Abel t	o understand the instrumentation and principal of uv-visible spectroscopy				
	the instrumentation and application of chromatography				
	about electrophoreses principle and application in biochemistry				
	o know microscopy and its functions				
CO 5: Also a	ble to know the instrumentation and application of NMR and XRD				
Credits: 4	Type of Course: Core				
Max. Marks:	100Min. Passing Marks: 36				
Block 1	Spectroscopy and Chromatography				
	Spectroscopy:				
Unit-I	Origin of spectra and electronic transition, Visible and UV Spectroscopy-tools				
Ollit I	and techniques and applications, atomic adsorption, spectroscopy- tools and				
	techniques and applications.				
Unit-II	Chromatography				
	Principle, thin layer, ion exchange, affinity, hydrophobic exchange and ge				
	filtration chromatography, principle and instrumentation of high performance				
	liquid chromatography (HPLC).				
Block- II:	Centrifugation and Electrophoresis				
	Centrifugation				
Unit-III	Principles of centrifugation, types of centrifuges, differential centrifugation				
density gradient, and ultracentrifugation.					
Unit-IV	Electrophoretic techniques:				
	General principles, electrophoresis of proteins, native-PAGE and SDS-PAGE,				
	agarose gel electrophoresis for DNA, isoelectric- focusing, 2D gel				
	electrophoresis.				
Block- III:	Microscopy, X-ray diffraction and NMR				
	Microscopy:				
Unit-V	Basic principles and instrumentation of scanning election microscopy (SEM)				
Chit V	and transmission electron microscopy (TEM), scanning tunneling microscopy,				
	specific staining of biological materials				
Unit-VI	Instrumentation:				
	X-ray diffraction and NMR principle, instrumentation and applications.				
Suggested 7					
00	Text Book Readings:				
1. Princ	Fext Book Readings: ipal and Techniques Of Biochemistry and Molecular Biology, Wilson and Walker,				
1. Princ Sever	Text Book Readings:				

- 4. S.M. Khopkar, Basic Concepts of Analytical Chemistry, New Age International Pvt Ltd Publishers, 2018
- 5. Y R Sharma, Elementary organic spectroscopy; S Chand publication, Fifth edition 2013.
- 6. Pavia donald, Introduction to spectroscopy, 5th edition.

- 1. Introduction To Spectroscopy: <u>Introduction To Spectroscopy.Pdf (Su.Se)</u>
- 2. Principles Of Spectroscopy: Microsoft Powerpoint Spectroscopy-Chem6230 (Ugpti.Org)
- 3. Introduction, Chromatography Theory, and Instrument Calibration: <u>Microsoft Word Ch 1</u> 2017.Doc (Whitman.Edu)
- 4. Techniques in Techniques in Molecular Biology: <u>Microsoft Word Bbyet-141_ Vol. 1,</u> <u>Credit Page, Bi, Ci_28-7-2021_(Egyankosh.Ac.In)</u>

This course can be opted as an elective by the students of following subjects: M.Sc. (Botany), M.Sc. (Zoology)

Suggested equivalent online courses (MOOCs) for credit transfer:

Biochemistry of Biomolecules: Biochemistry of Biomolecules - Course (swayam2.ac.in)

Programme:		Year: 2023	Semester: I	
Carrie Carle	5	Biochemistry	·	
	e: PGBCH-103N	Course Title: B	ioenergetics and Metabolism	
Course Obj	iscuss the process of metabolism			
	iscuss the bioenergetics process			
	iscuss the carbohydrate metabolism	1		
	iscuss the metabolism of nitrogenor			
Course Out	6	us compounds		
	to know the energy production for a	metabolism		
	about oxidation potential and ener			
	about metabolism of carbohydrate	•• •		
	to understand the metabolism of an			
CO 5: Also a	able to know the urea cycle and its	regulation		
Credits: 4		Type of Course	:: Core	
Max. Marks:	: 100	Min. Passing N	Iarks: 36	
Block 1	Bioenergetics			
	Bioenergetics-I:			
TT 1 . T	Concept of free energy, standard	d free energy, de	etermination of ΔG for a reaction,	
Unit I	relationship between equilibrium constant and standard free energy change,			
	biological standard state and star			
Unit II	Bioenergetics-II:			
Ollit II	U	, phosphoto co	mounds ATD phasphata group	
	Redox potentials, high energy phosphate compounds-ATP, phosphate group			
	transfer, photosynthetic light reactions.			
Block 2		Coenzyme sand Carbohydrate Metabolism		
	-	• •	coenzymes involved in different	
Unit III		•	es, isozymes, abzymes, synzyme,	
	pyridoxal phosphate and B12 co	enzymes.		
Unit IV	Carbohydrate Metabolism:			
	Glycolysis, fermentation, TC.	A cycle, elect	ron transport chain, oxidative	
	phosphorylation, gluconeogenes	sis, glycogenesis	s, energetic can dregulation of	
	metabolic cycles, metabolism	of disacchari	des, hormonal regulation of	
	carbohydrate metabolism.			
Block 3	Metabolism of Amino acids an	d Nitrogen com	pounds	
Unit VI	Amino acids:			
	General reactions of amino ac	id metabolism-t	ransamination, decarboxylation,	
			minoacids. Specialmetabolism of	
	methionine, histidine, phenylal		-	
	leucine, isoleucine and polyamir	•	a getophan, gonie, vanne,	
Unit V	Metabolism of nitrogen compo			
			transamination deamination	
	Metabolism and regulation, decarboxylation, transamination, deamination,			
	metabolism and regulation of ure	ea, Urea cycle an	a its regulation.	
00	Fext Book Readings:			
	getics, David Nicholls, Academic			
2. Bioener	getics, Alexander Lowen Penguin	BOOKS, ISBN13:	9780140194715	

- **3.** Principles of Biochemistry: Lehninger, Nelson and Cox. Student Edition, CBS 1439 Publishers and Distributors, Delhi.
- 4. Fundamentals of Biochemistry: Dr J L Jain, S. Chand and Company

- 1. Bioenergetics: (Pdf) Bioenergetics (Researchgate.Net)
- 2. Metabolism of Amino Acids —General Aspects: <u>Bch103-7.Pdf (Davuniversity.Org)</u>
- 3. Carbohydrates Metabolism: <u>Slide 1 (Mgcub.Ac.In)</u>
- 4. Glycolysis- glycolysis (ttuhsc.edu)
- 5. Introduction to Nitrogen Metabolism: <u>Nitrogen Metabolism.pdf (slideshare.net)</u>

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Year: 2023-24 Semester: I				
Subject: Biochemistry				
N Course Title: Basics in Research				
 Course Objectives: To discuss the Sources of information To discuss about journal abbreviations To discuss the monographs, dictionaries, text books etc. 				
how to get information of research. rnal and article and research manuals e role of primary, secondary and tertiary sources of information. e about abstract and citation index. t digital web resources				
Type of Course: Core				
Min. Passing Marks: 36				
Attendure Survey Introductions: Sources of information, need for reviewing literature, rimary-secondary and tertiary sources, journals, journal bbreviations, abstracts, current titles, reviews, monographs, ictionaries, text books, current contents, patents. Introduction to hemical abstracts and beilstein, subject index, substance index, uthor index, formula index and other indices with examples. Digital: Web resources, E-journals, journal access, TOC alerts. Hot articles: Citation index, UGC infonet, E-books, Impact Factors, Search ngines- Google scholar, chemical industry, Wiki-databases, hemSpider, Science Direct, SciFinder, Scopus				
Ethics and IPR Regulatory bodies, practices and compliances, Good Laboratory Practices (GLP), Research Ethics & Misconduct, Patents, Copyrights, GI and Trademarks, Product and process patent, Patent Treaties and Convention, process of filing patent, database of patent, search and retrieval.				
eadings: rching engine to get relevant information (Google scholar, chemical abases, chem Spider, Science Direct, SciFinder, Scopus. nt online research library and research portal (Web resources, E- ccess, TOC alerts)				

Suggested equivalent online courses (MOOCs) for credit transfer:

1. Research Ethics, Shri. Manoj Kumar K, INFLIBNET, https://onlinecourses.swayam2.ac.in/cec22_ge28/preview

Note:- In this paper, learner itself study the objectives and prepare a report. The report will be submitted along with assignment to respective study center for evaluation. The maximum marks for evaluation are 100.

Programme:	M.Sc.	Year: 2023	Semester: II		
		Biochemistry			
Course Code	Course Code: PGBCH-106N Course Title: Nutrition and Physiology				
	Course Objectives:				
≻ To di	scuss the nutrition and physiology	of human			
🕨 To di	scuss the element of human nutriti	on			
≻ To di	scuss the protein that is the building	ng block of living	g being		
≻ To di	scuss the digestive system and resp	piration			
Course Out	comes:				
CO 1: Al	ble to understand the role of nutriti	on in physiology	Į		
CO 2: Lea	arn the Basal metabolic rates (BMI	R)			
CO 3: Ab	le to describe the dietary resource	and metabolic fu	unctions of nutrients		
CO 4: Ab	le to know the blood composition				
CO 5: Als	so able to know the respiratory syst	tem and ATP			
Credits: 4		Type of Course	e: Core		
Max. Marks:		Min. Passing N	/larks: 36		
Block 1	Nutrition and Nutritional Elen	nents			
	Basic Concepts of nutrition:				
Unit I	Function of nutrients, measurement of caloric value of food, basal metabolic rate				
Chit I	(BMR); factors affecting BMR, recommended dietary allowances, dietary				
	recommendations human nutrition	onal needs, maln	utrition.		
Unit II	Elements of nutrition:				
	Dietary requirement of carbohy	ydrates, lipids a	and proteins; concepts of protein		
	quality, micronutrients and mac	cronutrients, ess	ential amino acids, essential fatty		
	acids and their physiological function, deficiency and toxicity of nutrients.				
Block 2	Vitamins, Minerals and Physic	ology			
	Vitamins and minerals:				
I Init III	Dietary sources, biochemical functions, water soluble and fat soluble vitamins,				
Unit III	requirements and deficiency diseases associated with vitamins, role of minerals in				
	metabolism				
Unit IV	Introduction to physiology:				
	Blood-composition and function	ons of plasma,	erythrocytes, leucocytes and		
	thrombocytes, blood coagulation	n, types of blood	groups, antigen and antibodies,		
	blood transfusion.				
Block 3	Digestive system and Respiration				
Unit V	Digestive system:				
	Compositions, parts of alimentary canal, functions and regulation of saliva,				
	gastric, pancreatic, intestinal and bile secretions, role of enzymes in digestive				
system.					
Unit VI	Respiration:				
	-	es of respiration	n lungs structure mechanism of		
Inspiration and expiration, types of respiration, lungs structure, breathing and Its regulation,			n, rango structure, meenamoni Of		
Suggested	Suggested Text Book Readings:				
Suggested	ext book keadings:				

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- 3. Nutritional Biochemistry, DC Sharma, CBS Nursing publication
- 4. Nutritional Biochemistry, Tom Brody, Academic Press publication
- 5. Satyanarayana U., "Biochemistry" Elsevier India, 2021

- 1. Food, Nutrition, Health and Fitnes: <u>kehe103.pdf (ncert.nic.in)</u>
- 2. Human Vitamin and Mineral Requirements: Foreword (fao.org)
- 3. Vitamins: Vitamins & Minerals (austincc.edu)
- 4. The Digestive System: <u>https://www.uc.edu/content/dam/uc/ce/docs/OLLI/Page</u> <u>Content/OLLI - The Digestive System.pdf</u>

This course can be opted as an elective by the students of following subjects: M.Sc. (Zoology) M.Sc. (Nutrition and Home Science)

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme:	M.Sc.	Year: 2023	Semester: II	
		Biochemistry		
Course Code	: PGBCH-107N	Course Title: E	Bio-Statistics	
Course Objectives:				
To dia	scuss the history and scope of bio-	statistics		
	scuss the different statistical techn	1		
	scuss the bio chemical data analys	•	al methods	
	scuss the research methodology ar	nd hypothesis		
Course Outc				
	le to understanding of history and	-		
	le to know the role of mode, medi		lata analysis.	
	learn about sampling and samplin			
	le to know the process of analysis			
	able to hypothesis analysis and im	r		
Credits: 4		Type of Course		
Max. Marks:	100	Min. Passing N	1arks: 36	
Block 1		1 01 10		
	• • • • •	-	e of Research, About Research	
Unit I	Problem and its Selection, Measures of Central Tendency, Measures of			
	Dispersion, Measures of Asymm	netry.		
Unit II	Measures of Relationship, Regre	ession Analysis A	Association of Attributes, 3-Sigma	
	Limits.About Sampling, Differe	ent Types of Sa	mpling Designs, Simple Random	
	Sampling, Stratified Sampling, G			
Block 2	Vitamins, Minerals and Physiology			
			of Probability. Additive and	
	Basic Concepts of Probability, Definitions of Probability, Additive and Multiplicative law of Probability, Conditional Probability, Bayes' Theorem.			
Unit III				
	Random Variable and its types, Probability Mass Function, Probability Density Functions			
Unit IV		D 1'		
UnitIV	Source of Vital Statistics and Demographic Data, Rates, ratio, proportion,			
	Measures of Fertility, measures of mortality, measures of morbidity, Migration.			
	Probability Distributions, Binomial Distribution, Poisson distribution,			
	Geometric Distribution, Normal	Distribution, Ex	ponential Distribution	
Block 3	Digestive system and Respiration			
Unit V	About Hypothesis and its Type	es, Level of Sig	nificance, Critical Region, P	
	Value, Types of errors, Chi-Squ	are Tests, t-tests,	, z-tests.	
Unit VI	Respiration:			
	Analysis of Variance and Co-Variance, Basic Principles of ANOVA and			
ANCOVA. (One Way, Two Way and Three Way Analysis)				
Suggested T	ext Book Readings:	• •	•	
00	luction to Statistics, David Lane, I	Rice University		
	Statistics, B.L. Agrawal, New Ag	•	Private Limited	
3. Basic Statistics, Thomas Higher Education Textbooks				
4. Computer Fundamentals : Concepts, Systems & Application, Priti Sinha, Pradeep K.,				
Sinha, BPB Publications				

- 1. Introduction to Descriptive Statistics: <u>introduction-to-descriptive-statistics.pdf</u>
- 2. Descriptive Statistics: <u>Slide 1 (incois.gov.in)</u>
- 3. Basic Probability Theory: <u>46628-0 Ash 1 (illinois.edu)</u>

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer:

1. Introduction to Biostatistics: Introduction to Biostatistics - Course (nptel.ac.in)

Programme:	M.Sc.	Year: 2023	Semester: II		
		Biochemistry			
Course Code	Course Code: PGBCH-108N Course Title: Clinical Biochemistry				
Course Obje	Course Objectives:				
	scuss the clinical process and cher				
	scuss the genetic and chemical cor				
	scuss nutrition, drugs and digestio	n			
Course Outo					
	le to understand the role of clinica	•			
	le to know the composition of boo		acro and micronutrient		
	ow genetic damage by ionization i		abolism		
	le to know the control of water and o able to know inborn errors of m		adonshi		
Credits: 4	b able to know indomi enors of in	Type of Course	. Coro		
Max. Marks:	100	Min. Passing N			
Block 1	Clinical process and chemical		luino. 50		
DIOCK I	Basic in clinical chemistry:	control			
TT 1 . T		n laboratory, cl	inical utility, blood samples,		
Unit I	Role of clinical biochemistry in laboratory, clinical utility, blood samples, respiratory and metabolic control of pH, disorder of acid base balance, blood				
	gases and its measurement, anio		,		
Unit II	Genetic and chemical control:				
	DNA and genetic information	n, genetic dama	age by ionization radiation,		
	mutation and carcinogens, canc		· · · ·		
	measurement of hormones, en-	docrine disorder	r, investigation of endocrine		
	diseases.				
Block 2	Nutrition, drug and digestion				
TT '/ TTT	Nutrition and drug:				
Unit III	Composition of body fluids, macro and micronutrient, assessment of nutritional status, therapeutic drugs monitoring, drugs overdose.				
Unit IV	Digestion:	igs monitoring, c	urugs overdose.		
Ollit I V	0	as and aliniaal	disordan disordan of asid base		
	Digestive process, gut hormon	es and chinical (uisoider, disoider of actu base		
	balance anion gap.				
Block 3 Unit V	Electrolyte transport and inbo		tabolism		
Unit v	Control of water and electroly		holongo of water algotralists		
	Water balance, osmolarity of se and potassium, measurement of				
	disorders related to calcium meta		blassium, control of calcium,		
Unit VI			groups, measurement of plasma		
Unit VI Transport and Storage: plasma proteins, protein groups, measurement protein, lipids transport and lipids disorders, atherosclerosis, and specific					
	lipoproteins.	, un	proteinit,		
Unit VII	Inborn errors of metabolism:				
	Inheritance, Investigation of	IBEM, Investig	gation of suspected IBEM,		
	Parental diagnosis, Phenylketon		- <u>-</u>		
	Text Book Readings:				
	al Biochemistry: Metabolic and Cl	-	-		
2. Practical Clinical Biochemistry Methods And Interpretations: Ranjna Chawla					
3. Early Clinical Exposure: A Case Based Approach in Clinical Biochemistry: Anita Chalak,					

Jaypee Brothers Medical Publishers.

- 4. Clinical Biochemistry, Richard Luxton, Viva Books publisher
- Suggested online links:
 - 1. DNA: The Genetic Material: <u>Ch10-1 Gen material.pdf (csun.edu)</u>
 - 2. Pathophysiology of Water and Electrolyte Metabolism: <u>PowerPoint Presentation (bns-hungary.hu)</u>
 - 3. Inborn errors of metabolism: INBORN ERRORS of METABOLISM, Part 1 (ufl.edu)
 - 4. Digestive System: <u>PowerPoint Presentation (uc.edu)</u>

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme: M.Sc.	Year: 2023-24	Semester: II			
Subject: Biochemistry					
Course Code: PGMP-02N	Cours	Course Title: Mini Project			
Course Objectives:	I				
To discuss to project					
To discuss how to select	the topic of project				
To know how writing the	To know how writing the projects				
To discuss about needs o	f information for project				
Course Outcomes:					
CO 1: Able to learn about how to	o get information of project				
CO 2: Learn about journal an	d article and research manu	als			
-		ertiary sources of project work.			
CO 4: Also know how to use					
CO 5: learn about writing of	•				
Credits: 4	Type of Course: Core	<u>, </u>			
Max. Marks: 100	Min. Passing Marks: 3				
		t on selected topic of their own			
choic		pervisor) and prepare the report and			
	submit it to the University Examination Department and School of Science of the University for evaluation.				
Suggested Text Book Reading					
		ormation (Google scholar, chemical			
industry, Wiki-databases, chem Spider, Science Direct, SciFinder, Scopus.2. Access to different online research library and research portal (Web resources, E-journals,					
journal access, TOC alerts)	esection notary and researe	in portair (web resources, E journais,			
Suggested online link:					
1. You tube					
2. Web resources					
3. Hot articles					
4. Science Direct					
5. SciFinder, Scopus					
Google scholar					
Google scholar					
Note: Students shall make mini project on selected topic of their own choice studied so far (with or					
without any, Supervisor) and prep	without any, Supervisor) and prepare the report. The report will be submitted along with				
assignment to respective study ce	assignment to respective study center for evaluation. The maximum marks for evaluation are 100.				

Programme: M.Sc.		Year: 2023	Semester: III	
0		Biochemistry		
Course Code: PGBCH-111N Course			nzymology and Enzyme	
Course Obj	ectives:			
🕨 To di	scuss the nomenclature and class	ification of enzy	mes	
	scuss the mechanical action of en	~		
	scuss the enzyme kinetics and re	gulation		
Course Out				
	le to understand the enzymes act	1 1		
	le to know mechanism of enzym		llation.	
	ow the isolation and purification			
	le to know the purification and l	0 1	ction of enzymes	
Credits: 4	o able to know the multi-enzyme		. Com	
Max. Marks:	100	Type of Course Min. Passing M		
Block 1	Enzymes nomenclature and 1			
DIUCK I	Introduction to enzymes:	munti-enzymes c	ompicato	
	•	tion of enzymes	s, general properties of enzymes,	
Unit I		•	• • • •	
	cofactors and specificity, Criteria for enzyme homogeneity, bioenergetics of enzymes reactions, catalytic antibodies			
Unit II	Multi-enzymes complexes:	litooules		
Olint II	• -	Finial anotypica	actalytic antibadias Enzyma	
	Isozymes, Coenzyme, artificial enzymes, catalytic antibodies, Enzyme engineering-strategies, directed evolution, degradation of unnatural substrates.			
	Protein mediated transport, enzyme inhibition, determination of KI, suicide			
	inhibitors.	-		
Block 2	Enzyme kinetics and regulat	ion		
	Enzyme kinetics:			
Unit III	Active sites, Enzyme specificity, Enzyme unit, Enzyme velocity, Activation			
	energy and transition state enzymatic reaction mechanisms, Michaelis- Menten			
	equation, Effect of substrate, pH, temperature and inhibitors on enzyme activity.			
Unit IV	Mechanism of enzyme action	and regulation	:	
			fication, feedback inhibition,	
			c enzymes, marker enzymes,	
	enzyme region and stererio spe			
Block 3	Industrial enzymes and purification			
Unit V	Industrial enzymes: In detergent, food, leather, dairy, medicines and chemical industries. Enzyme			
	•	•	-	
Unit VI	immobilization: Introduction, I	**	nons and minitations.	
	Isolation and purification of	•	on of anyway with principles and	
	-		on of enzymes with principles and	
	applications of the involved techniques, viz gel filtration, ion exchange and affinity chromatography, centrifugation and electrophoretic techniques			
Suggested 7	Fext Book Readings:	nugation and cle		
	0	ehninger Princin	les of Biochemistry" International	
1. Duvi	$\sim 10^{-1}$ COA, L	eminger i meip	ies of Divenentition y international	

Edition-2021.

- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- 3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- 4. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.
- 5. Satyanarayana U., "Biochemistry" Elsevier India, 2021

Suggested online links:

- 1. Enzyme Kinetics: <u>Enzyme Kinetics (columbia.edu)</u>
- 2. Nomenclature and Classification of Enzymes: Enzymes_Nomenclature_and_Classification (amu.ac.in)
- 3. Mechanism of Enzyme Action: Mechanism of enzyme action (jrc.ac.in)
- 4. Applications of Enzyme: <u>45 Enzymes Applications.pdf (du.ac.in)</u>

This course can be opted as an elective by the students of following subjects: M.Sc. (Zoology) M.Sc. (Biotechnology)

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme: M.Sc.		Year: 2023	Semester: III		
	Subject: Biochemistry				
Course Code: PGBCH-112N Course Title: Immunology					
•	Course Objectives:				
	To discuss the immunology and immune system				
	scuss the elements of immune syst				
To discuss infectious diseases and immunology Course Outcomes:					
CO 1: Able to understand the architecture of immune system					
CO 2: Able to know the role of T cells and stem cell.					
CO 3: Kno	ow the antigens processing and pro-	esentation.			
	e to Understand the primary and s	• 1	se,		
	b able to know the signal transduc		~		
Credits: 4	400	Type of Course: Core			
Max. Marks: Block 1		Min. Passing M	larks: 36		
DIUCK I	Immune system Introduction to immunology				
		architecture of	immune system, primary and		
Unit I			d selection of T cells, types of		
Olit I			nune technology, clonal selection		
	theory.	, stem een,			
Unit II	Immunity:				
0	č	uired. adaptive	and cellular immunity, immune		
			-		
	response, inflammatory barrier, hormonal influence, peptide binding by class I and class II major histocompatibility complex.				
Block 2	Elements of Immune System	r			
		e System, B-c	ells maturation, activation and		
			and differentiation, t-cells and		
Unit III	bcellsreports, macrophages, dendrites cells, natural killer cells (NKcells),				
	organization and expression of immunoglobulin genes.				
Unit IV	Antigens processing and presen				
	humoral immunity, cytokines,	complement sys	tem, classification of common		
	vaccines for humans, vaccines (hepatitis, influen	iza, measles), blood groups and		
	Rh factor.	-			
Block 3	Infection diseases and immuno	ology			
Unit V	Immune response to infection				
		• •	e, signal transduction properties,		
TT */ T7T	antibody receptor structure, hype				
Unit VI		mmunologic tol	lerance, immunology of tumors,		
Suggested T	cancer and AIDS.				
	Suggested Text Book Readings:				
	 A Textbook Of Immunology: Latha P. Madhavee, S Chand & Company, publication Immunology, Dulsy Fatima, Saras Publication 				
	3. Basics Of Immunology, Preeti Sharma, IP Innovative Publication				
5. Dasies of minunology, freed Sharma, if milovative fublication					

Basics Of Immunology, Preeti Sharma, IP Innovative Publication
 Immunology, David Male, Elsevier publication

- 1. Introduction to Immunology: <u>Immunology.pdf (hmmcollege.ac.in)</u>
- 2. Components of Immune system: components of immune system (dhingcollegeonline.co.in)
- 3. Immune System: Immune System_Handout (Soinc.Org)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer:

Biochemistry of Biomolecules: Biochemistry of Biomolecules - Course (swayam2.ac.in)

Programme:	M.Sc. Year: 2023 Semester: III				
	Subject: Biochemistry				
Course Code	Course Code: PGBCH-113N Course Title: Basic Biotechnology				
Course Objectives:					
	scuss the basic history and scope of biotechnology.				
	Γο discuss the molecular biology and recombinant DNA technology.				
	scuss the medical biotechnology				
	scuss the agriculture and food biotechnology				
Course Outo					
	le to understand the role of biotechnology in medial le to understand the role of biotechnology in agriculture and food biotechnology				
	know about cell molecular biology				
	arn about plant and animal biotechnology.				
	so able to know the recombinant DNA technology				
Credits: 4	Type of Course: Core				
Max. Marks:					
Block 1	Biotechnology and molecular biology				
	Biotechnology:				
	An overview-definition, scope and importance of Biotechnology, useful products				
Unit I	of biotechnology, A brief account of microbes in industry and agriculture,				
	Fermented and Probiotic foods, Food spoilage and preservation, Metabolic				
	engineering for over production of metabolites, Biotransformation.				
Unit II	Molecular Biology & Recombinant DNA Technology:				
	Concept of Recombinant DNA Technology and Gene Cloning, advance methods				
	of molecular biology, Vectors, Vector engineering, Enzymes involved in RDT, Recombinant gene construction, Gene Transfer methods, Gene expression studies,				
	Polymerase Chain Reaction (PCR).				
Block II	Agricultural Biotechnology and Animal & Plant Biotechnology				
Unit III	Agriculture, Food and Environmental Biotechnology:				
	Role of biotechnology to Improve yield and nutritional values of crop, GM Foods,				
	Labeling of GM Foods, Risks (Health, Environment etc) associated with GM				
	Foods, Biobusiness, Biosafety, Role of Biotechnology in pollutants remediation				
	(air, water and soil) and energy productions,				
	Bioremediation, Restoration of degraded lands and Conservation of biodiversity.				
Unit: IV	Plant and Animal Biotechnology:				
	Introduction to plant tissue culture and its applications, Gene transfer methods in				
	plants, transgenic plants, In-vitro fertilization and embryo transfer in humans and				
	livestock, Transfection techniques and transgenic animals, Animal Cloning.				
Block 3					
Unit V	Block–III: Biotechnology and Molecular biology Medical Biotechnology:				
	Biotechnology in medicine, Vaccines, Diagnostic, Forensic, Gene therapy, Nano				
	Medicine & Drug Delivery Cell & Tissue Engineering, Genetic disorders, Molecular methods of disease diagnosis				
Unit VI	Molecular methods of disease diagnosis				
	Hybridoma technology, Gene therapy, Stem cell for treatment of diseases,				

	Therapeutic molecule, Immunological techniques. Different types of culture	
	media.	
Suggested T	ext Book Readings:	
1. Advanced Biotechnology, Dubey R.C. S Chand & Company publisher		
2. Biotechnology: A Problem Approach, Biotechnology: A Problem Approach, Pathfinder		
Publica	tion	
3. Basic B	iotechnology, Ratledge Colin, ambridge University Press	
4. Plant bi	otechnology, Adrain Slater et al., South Asia Edtion.	
Suggested or	Suggested online links:	
1. Biotechnology history: Biotechnology all lecture notes - Lecture 1- Biotechnology history		
Biotechr	ology definition- any - Studocu	
2. Introduction to biotechnology, history and concepts definition: <u>fsba-module-2-unit-1-notes-</u>		
	odf (rug.nl)	
	inant DNA Technology: Chapter14.pdF (richmond.edu)	
4. Animal	4. Animal Biotechnology: <u>1589512953_Z(H)-VI-Biotech-4.pdf (deshbandhucollege.ac.in)</u>	
5. Medical	biotechnology: Medical Biotechnology (vu.edu.pk)	
This course can be opted as an elective by the students of following subjects: NA		
Suggested equivalent online courses (MOOCs) for credit transfer: NA		

Programme: M.Sc.		Year: 2023-24	Semester: III	
Subject: Biochemistry				
Course Code: PGRT-03N		Course Title:	: Basics in Research Tools	
Course Objectives:				
To discuss the application of MS office				
		tools for research work.		
To discuss application				
To discuss about re	eference n	nanagement tools		
Course Outcomes:				
CO 1: Able to learn about			earch work.	
CO 2: Learn about Late				
			S, R-software, Octave, Matlab	
_		blication of Mendeley-so	itware.	
CO 5: Also know abou	t Refwork	is and Zotero, etc		
Credits: 4		Type of Course: Core		
Max. Marks: 100		Min. Passing Marks: 30	6	
	Applicat	tion of MS Office/Latex	a in research	
Topic 1			fice/ Latex Tools with MS-XL,	
		oint Presentation.		
Topic 2 Applicati		tion of Software's		
	Uses and application of Softwares such as plagiarism software,			
		raw, Origin, SPSS,	R-software, Octave, Matlab,	
	Mercury			
		ce management tools		
		d application of Mendeley-software, EndNote, RefWorks		
Suggardad Tart Daals D	and Zotero, etc.			
Suggested Text Book Readings:				
1. Microsoft office: Microsoft Office Essentials - IT Essentials: a Practical Guide - Subject				
Guides at University of York				
2. How to Convert an Excel Table to a Latex table: <u>How to Convert an Excel Table to a Latex</u>				
<u>table - YouTube</u>				
3. SPSS – What Is It: <u>SPSS - Quick Overview & Beginners Introduction (spss-tutorials.com)</u>				
4. Video Processing in MATLAB: Video Processing in MATLAB - Video - MATLAB &				
Simulink (mathworks.com)				
5. ChemDraw Tutorial: ChemDraw Tutorial - YouTube				
Note:- In this paper, learner itself study the objectives and prepare a report. The report will be				
submitted along with assignment to respective study center for evaluation. The maximum marks for				

evaluation are 100.

Programme:				
	Subject: Biochemistry			
Course Code: PGBCH-116NCourse Title: Biosafety and IPR				
Course Obje				
To discuss the history and process of biosafety To discuss the natural and convention process				
 To discuss the patent and convention process To discuss the Gene and GMO 				
	scuss the patents and agreement			
Course Outo				
	le to understand the biosafety and risk assessment.			
	le to know the role of WTO and international agreement			
	know about laboratory and environment biosafety			
CO 4: Ab	le to known the ecological aspects of GMOs and impact on biodiversity			
CO 5: Lea	arn to know the risk management and intellectual properties right			
Credits: 4	Type of Course: Core			
Max. Marks:				
Block 1	Biosafety and convention			
Unit I	Bio-safety and risk assessment tissues, regulatory framework, National biosafety			
	Policies and law, The Cartagen a protocol on biosafety.			
Unit II	WTO and Agreement:			
	WTO and other international agreements related to biosafety; Cross border			
	Movement of germplasm; Risk management issues containment. The WTO and			
	other international agreements; Intellectual properties, copyrights, trademarks,			
	trade secret, patents, geographical indications, etc.			
Block 2				
11	General principles for the laboratory and environmental biosafety; healthy aspects;			
Unit III	toxicology, allergenicity, antibiotic resistance etc. Impact on environment			
Unit IV	Gene flow:			
	Gene flow in natural and artificial ecologies; Sources of gene escape, tolerance of			
	Target organisms, creation of super-weeds/super viruses etc.			
Block III	Patent and agreements			
Unit V	Ecological aspects:			
	Ecological aspects of GMOs and impact on biodiversity; Monitoring strategies and			
	methods for detecting transgenics; Radiation safety and non-isotopic procedures			
	Benefits of transgenics to human health, society and the environment.			
Suggested 7	Text Book Readings:			
00	Biosafety and Bioethics: Deepa Goel, Shomini Parashar; Pearson, 2013			
 Bioethics and Biosafety: M.K. Sateesh, I. K. International Pvt Ltd, 2013 				
3. Plant Biotechnology: Principles and Applications, Malik Zainul Abdin, Usha				
Kiran, Kamaluddin, Athar All, Springer, 2017				
4. General Biochemistry: J.H.Weil., Wiley Eastern, Limited, 1990				
	troduction to Ethical, Safety and Intellectual Property Rights Issues in			
biotec	chnology: Padma Nambisan, Academic press 20107.			

Suggested online links:

- 1. Cartagena Protocol on Biosafety: Biosafety: <u>1527_CBD_40pgs-layout</u>
- 2. Text of the Convention: <u>Text of the Convention (cbd.int)</u>
- 3. WTO Agreements: <u>WTO Agreements</u>, an overview of WTO agreements, <u>TRIPS</u>, <u>TRIMS</u>, <u>AOA</u>, <u>GATS</u>, international business ugc YouTube
- 4. Environmental Aspects: Environmental Aspects (usda.gov)

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme:	M.Sc.	Year: 2023 Semester: IV	
	Subject: Enviro	nmental Science	
Course Code: PGBCH-117N/PGEVS 120N		Course Title: Environmental Toxicology & Occupational Health Hazards	ż
Course Obje	ectives:		
To dis	scuss about environmental toxicity	/ and toxicant	
To dis	scuss about rout of environmental	toxicant of human beings	
To dis	scuss about occupational toxicolog	gy and its effects on human health	
• To dis	scuss the transformation of toxicar	nt and systematic toxicity	
Course Outc	comes:		
CO 1: Abl	le to know the toxicity of environn	nent and its effect	
	rn the duration and exposure of to		
CO 3: Abl	le to know the distribution, binding	g and storage, and excretion of toxicant.	
CO 4: Kno	ow the different types of systemati	ic toxicity.	
CO 5: Als	o learn the occupational toxicant e	exposure and limits	
Credits: 4		Type of Course: Core	
Max. Marks:	100	Min. Passing Marks: 36	
Block 1	Toxicity and Toxicants		
	Introduction to Toxicology:		
TT:4 T	Definition, history and scope of	toxicology, toxicant, types of toxicant, toxicity	
Unit I		xicants, target and non organ toxicity, dose effect	cts
	and dose response relationship.		
Unit II	Toxicants:		
	Classification of toxic agents, natural toxins, animal toxins, plant toxins, food		
	toxins, genetic poisons and chemical toxins.		
Unit III	Duration and exposure of toxicant:		
	Acute exposure, chronic exposure, types of human exposure- internal exposure,		
		nental exposure, accidental poisoning and inter-	nal
	poisoning		
Block 2	Toxicity and Public Health		
Unit IV	Fate of toxicant in human body		
	Toxicant absorption, distribution, binding and storage, and excretion, active and		l
	passive transport of toxicant.		
	Chemical toxicity in human:		
Unit V		ones, minerals toxicity-sodium, potassium, iodi	
		pper, selenium and manganese toxicity, toxicity	' OI
Unit VI	dioxins.		
Unit VI	Public Health : Toxicologists and public health, laws and regulations governing toxicants,		nta
	e i		
epidemiological approaches to toxicants, Blacklisted toxic chemicals, pesticide automobile emission.			ue,
Block 3	Systematic Toxicity		
Unit VII	Renal toxicity		
	· ·	nd functions, susceptibility of kidney to toxic	
	insult, chemically induced renal		
Unit VIII	Cutaneous toxicology:	····] ··· J ·	

	Dermatological effects of toxic agents, Allergic contact dermatitis, Cutaneous carcinogenesis
Unit IX	Pulmonary and Hepatic toxicity: Toxicant causing respiratory dysfunction, mechanism of entry of toxicant into the lungs, Systematic lung toxins, Actions of toxins on the liver, Chronic liver injury. Carcinogenesis and Testing methods
Unit X	Carcinogenesis and mutagenicity: Carcinogenesis, and carcinogenesis, types of carcinogenes, mechanism of carcinogenesis, Mutation and mutagenicity, types of mutation, mechanism of mutagenesis
Unit XI	Transformation of toxicants:Bioaccumulation, biomagnifications, biotransformation, types ofbiotransformation, biotransformation of DDT, toxic material in environment.
Unit XI	Occupational toxicology: Occupational toxicants, exposure limits, Risks associated with hazardous substances, Risk assessment and management guidelines, Occupational/Industrial hygiene, Hazard control.

Suggested Text Book Readings:

- 1. Environmental Toxicology, Kees van Gestel, Vrije University, Amsterdam, Environmental Toxicology
- 2. Environmental Toxicology, Third Edition, Sigmund F. Zakrzewski, oxford university press
- **3.** A Textbook of Modern Toxicology: Ernest Hodgson A John Wiley & Sons, Inc., Publication
- 4. Principles of Environmental Toxicology, I. Shaw, J. Chadwick, CRC Press
- 5. Occupational Toxicology, Chris Winder, Neill H. Stacey, CRC Press

Suggested online link:

- 1. Introduction to Toxicology Introduction to Toxicology: <u>Introduction to toxicology</u> (europa.eu)
- 2. Introduction to Toxicology: Introduction to Toxicology | Part 1 | Complete Toxicology | NEET PG 2021 | Dr. Ambuj Mittal - YouTube
- 3. Chemical toxicology: <u>chemical toxicology part 2 || effects of heavy metals like arsenic |</u> <u>mercury,chromium,cadmium lead - youtube</u>
- 4. Drug-induced nephrotoxicity: <u>https://www.scielo.br/j/ramb/a/TC7wp7jkjgSjPMZ9ZNnqdMF/?lang=en&format=pdf</u>
- 5. Toxicology in Occupational and Environmental Setting: <u>c01 (wiley-vch.de)</u>

This course can be opted as an elective by the students of following subjects: M.Sc. (Zoology) M.Sc. (Environmental Science)

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme: M.Sc.		Year: 2023	Semester: IV	
	Subject: I	Biochemistry		
Course Code: PGBCH-118N/		Course Title:	Genetic Engineering	
PGZY 121N				
Course Obj				
	scuss the basics of genetic enginee	-		
	scuss the nucleic acids, enzymes a			
	scuss the PCR, DNA finger printir scuss the Immunotechnology, blot	0		
Course Out		ting techniques		
	le to understand the basics of mole	ecular biology a	nd its applications	
	le to understand the genes express	•••		
	e to understand the cloning vectors			
	o able to understand isolation of n			
technology				
Credits: 4		Type of Cours		
Max. Marks:		Min. Passing	Marks: 36	
Block 1	Material and Tools- I			
Unit I	History of genetics:			
	Basic molecular biology- gene e	xpression in pro	okaryotes and eukaryotes	
Unit II	Working with nucleic acids:	lialahalling of a	malais saids and labeling risk	
	Isolation of DNA and RNA, Rac translation, by primer extension,			
Unit III	Enzymes as tools:	sequencing methods- Maxam-Gilbert and Sanger-Coulson sequencing.		
	•	ses and restriction	on mapping. DNA modifying	
Restriction enzymes- Type II, uses and restriction mapping, DNA modifyin enzymes- Nucleases, Polymerases, and end-modifying enzymes, DNA ligas				
Block II	Genetic Engineering- I			
	Cloning vectors:			
Unit IV	Plasmids- pBR322, pUC8,Lambda (λ)-phage vector, M13 Phage, Cosmids,			
Unit I v			comosome (BAC), Yeast artificial	
	chromosome (YAC), Mammalian artificial chromosome (MAC)			
Unit V	cDNA and its applications:			
	Synthesis of cDNA from mRNA	-		
Block II	vectors, Expression of cloned c	DNA molecules	, cDNA library	
Unit VI	Genetic Engineering- II			
Unit VI	Cloning from genomic DNA: Genomic DNA and library, Preparation of DNA fragment for cloning, Ligation,			
	packaging and amplification of l		a magment for cronning, Elgation,	
Unit VII	Polymerase chain reaction (PC			
	Basic PCR, RT (reverse transcribed)- PCR, Real Time PCR, Applications of PCR			
in genetic engineering				
Unit VIII	DNA Finger printing:			
		ellites, Microsat	ellites, Methods and applications	
Unit IX	Screening and analysis of reco		· · · · · · · · · · · · · · · · · · ·	
	Use of chromogenic substrates,	Genetic selection	on methods, Nucleic acid probes-	
	Chromosome walking and jump	ing, Screening of	cloned banks, Immunological	

	screening for expressed genes, Blotting techniques		
Block IV	Genetic Engineering-II		
Х	Genetic engineering in action:		
	Analysis of gene structure and function, Techniques- Gel retardation, DNA foot		
	printing, DNA finger printing, Primer, extension, S ₁ mapping, and Dot-blot		
	analysis.		
XI	Immuno-technology:		
	Hybridoma technology, Monoclonal antibodies and its production, Antibody		
	engineering, Uses of monoclonal antibodies		
XII	Transgenic animals		
	Transgenic animals Vs cloned animals, Producing transgenic animals,		
	Applications of transgenic animals		
Suggested T	ext Book Readings:		
1. Karp's	s Cell and Molecular Biology, 9th Edition, by Gerald Karp, Wiley publication.		
2. Princi	ples of Molecular Biology, Rastogi, scientific international		
3. Genet	ic Engineering and Biotechnology by Tourte, Taylor & Francis		
4. David	L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International		
Editio	Edition-2021.		
	5. Biotechnology, by B.D. Singh, Kalyani publishers		
Suggested online links:			
	1. History of Genetics: <u>History of Genetics.pdf (colorado.edu)</u>		
•	2. Enzymes used in Genetic Engineering: <u>lec20.pdf (eagri.org)</u>		
	3. DNA Fingerprinting: <u>100004146.pdf (amu.ac.in)</u>		
4. Immunological methods and applications: <u>Online_Chapter.pdf (roitt.com)</u>			
	DNA cloning: <u>Chapter14.pdf (blackwellpublishing.com)</u>		
	6. Gene Cloning: <u>e200402-301.pdf (cheric.org)</u>		
This course can be opted as an elective by the students of following subjects: M.Sc.			
	.Sc. (Boyany)		
Suggested eq	uivalent online courses (MOOCs) for credit transfer: NA		

Programme:	M.Sc. Year: 2023 Semester: IV			
	Subject: Biochemistry			
Course Code	Course Code: PGBCH-120N Course Title: Microbiology and Toxicology			
Course Obje	ectives:			
To discuss the microbial diversity and culture				
	To discuss the methods in microbiology			
	scuss the nutritional microbiology and chemotherapy			
	scuss the role of microbes in agriculture and environment			
Course Outo				
	le to understanding of history and scope of microbes to understand the microbial diversity and its growth			
	le to learn the methods of microbial culture and techniques			
	by the role of microbes in agriculture			
	to able to discuss the environmental microbiology and its toxicity			
Credits: 4	Type of Course: Core			
Max. Marks:				
Block 1	Microbial diversity and culture			
	Microbial diversity and systematic:			
	Modern approaches to bacterial taxonomy, polyphasic classification, General			
	characteristics of primary domains and of Taxonomic groups belonging to			
Unit I	Bacteria, Archaea and Eukarya, Nomenclature and outline of bacterial			
	classification as per Bergey's Manual, Accessing microbial diversity using			
	molecular methods such as Denaturing Gradient Gel Electrophoresis (DGGE)			
Unit II	Methods in Microbiology:			
	Theory and practice of sterilization, Pure culture techniques, Principles of			
	microbial nutrition, Construction of culture media, Enrichment culture techniques,			
	Isolation and culture of aerobic and anaerobic bacteria, Culture collection,			
	preservation and maintenance of microbial cultures.			
Block II	Microbial Nutrition and Chemotherapy			
Unit III	Metabolic Diversity among Microorganism:			
	Microbial Nutrition, nutritional types and modes of nutrition in bacteria,			
	Extremophiles. Microbial growth: The definition of growth, mathematical			
	expression of growth, growth curve, measurement of growth and growth yields;			
Synchronous growth and Continuous culture.				
	Chemotherapy/Antibiotics Antimicrobialagents;			
	Antibiotics: Penicillins and Cephalosporins and Broad-spectrum antibiotics, sulfa			
Unit IV	drugs, Antifungal antibiotics, Mode of action, Molecular mechanism of drug			
resistance. Bacterial Genetic System: Transformation, Conjugation, Trans				
	Recombination, Bacterial genetic map with reference to Ecoli.			
Block III	Microbial diseases and Environmental Toxicology			
Unit V	Microbial diseases: Bacterial and virus diseases with reference to tuberculosis,			
	Cholera, AIDS, Rabies, food born diseases.			

Unit VI	Introduction to Environmental Toxicology, Bioconcentration, Bioaccumulation,
	and Biomagnification, Toxicokinetics, Xenobiotics Compounds,
	Biotransformation of Xenobiotics, Environmental Xenobiotic.

Suggested Text Book Readings:

- 1. Prescott' microbiology, eighth edition by By Joanne Willey and Kathleen Sandman and Dorothy Wood.
- 2. A textbook of Microbiology, R.C. Dubey and D.K. Maheshwari, S Chand & Company P Ltd, New Delhi
- **3.** Text book of microbiology by Ananthanarayan and paniker's, Seventh edition, Orient longman private limited.
- 4. Foundations in Microbiology, By Kathleen Park Talaro and Barry Chess, 10 edition
- **5.** Microbiology: An Introduction, 13th Edition by Gerard J. Tortora, Berdell R. Funke and Christine L. Case.

Suggested online links:

- 1. Microbial diversity and systematic: <u>1075X_CH03_025.qxd (jblearning.com)</u>
- 2. Microbiological Laboratory Techniques: <u>Microbiological Laboratory Techniques</u> (mowr.gov.in)
- 3. Antibiotics and chemotherapeutic agents: <u>Micro 260 Antibiotic agents and Modes of</u> <u>Action.pdf (spokane.edu)</u>
- 4. Environmental Toxicology: <u>Environmental Toxicology 3rd edition.pdf (unp.ac.id)</u>
- 5. Introduction to environmental toxicology: <u>Introduction to Environmental Toxicology</u>: <u>Molecular Substructures to Ecological Landscapes (routledge.com)</u>

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme:	Programme: M.Sc. Year: 2023 Semester: IV			
Subject: Biochemistry				
Course Code: PGBCH-121N Course Title: Industrial Biotechnology				
Course Obj				
	iscuss the process and fermentation			
	To discuss the process of industrial production			
	scuss the food technology and isolation process scuss the isolation process			
Course Out				
	the to understand the bioprocess technology.			
	le to understanding fermentation process.			
	the process of bioreactor and stability of microbial reactions.			
	le to understand the downstream process.			
CO 5: Lea	arn the sterilization and pasteurization process of food.			
Credits: 4	Type of Course: Core			
Max. Marks:	: 100 Min. Passing Marks: 36			
Block 1	Bioprocess and fermentation			
	Introduction to bioprocess technology, bioreactors, Isolation, preservation and			
Unit I	maintenance of industrial microorganisms, kinetics of microbial growth and death,			
	media for industrial fermentation, air and media sterilization.			
Unit II	Types of fermentation processes:			
	Analysis of batch, fed-batch, and continuous bioreactors, stability of microbial			
	reactors, analysis of mixed microbial populations, specialized bioreactors (pulsed,			
	photo bioreactors etc.) measurement and control of bioprocess parameters.			
Block II	Processing and industrial production			
Unit III	Downstream processing:			
	Introduction, removal of microbial cells and solid matter, foam separation,			
	precipitation, filtration, centrifugation, cell disruptions, liquid-liquid extraction,			
	chromatography, Membrane process, Drying and crystallization, Whole cell			
Unit IV	immobilization and its industrial applications.			
	Industrial production of chemicals:			
Alcohol (ethanol), acids (citric, acetic and gluconic), Solvents (glycero				
DI 1 111	butanol), Antibiotics (penicillin, streptomycin, tetracycline).			
Block III	Food technology and isolation process			
Unit V	Introduction to food technology:			
	Elementary idea of canning and packing, Sterilization and pasteurization of food			
	products, Technology of typical food/food products (bread, cheese, idli).			
Unit VI	Isolation process:			
	Isolation and screening of industrially important microorganism, different			
0	Processes of biofuels production, petroleum microbiology.			
	Fext Book Readings:			
	strial Biotechnology, Wim Soetaert and Erick J. Vandamme, Wiley-VCH cation.			
puon				

- 2. Modern industrial microbiology and biotechnology, Nduka Okafor, Science Publishers
- 3. Industrial Biotechnology, Varun Shastri, Disha Books
- 4. Industrial Biotechnology, Kavita, A.I.T.B.S. Publishers, India
- 5. Cruegers Biotechnology: A Textbook of Industrial Microbiology, Wulf Crueger, Medtech.

Suggested online links:

- 1. Bioprocess/Fermentation Technology: <u>Bioprocess/Fermentation Technology (Chapter 4)</u> -<u>Biotechnology (Cambridge.Org)</u>
- 2. Downstream Processing: <u>Validation (Biomanufacturing.Org)</u>
- 3. Biotechnology for Clean Industrial Products and Processes: <u>931998031 (Page 1)</u> (Oecd.Org)
- 4. Isolation, Screening and Strain Improvement: <u>isolation, screening and strain improvement</u> (<u>ub.ac.id</u>)
- 5. Introduction to Food Technology, General Aspect of Food Industry: <u>microsoft word 1</u>. <u>introduction to food technology</u>, general aspect of food industry.doc.docx (nptel.ac.in)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Programme:	M.Sc. Year: 2023 Semester: IV				
Subject: Biochemistry					
Course Code	Course Code: PGBCH-122N Course Title: Bioinformatics				
Course Obj	ectives:				
To discuss the history and scope of bio information.					
To discuss the molecular phylogeny					
	iscuss the 3D protein structure and classification of database				
-	iscuss the data base management				
Course Out					
	ble to understand the role of bioinformatics in biochemistry. ble to understand Simulation and drug designing				
	know about protein data base				
	ble to known the role of national center for biotechnology information				
	arn the process of protein data base bank management				
Credits: 4	Type of Course: Core				
Max. Marks:					
Block 1	Bioinformatics and Biological data bases				
	Introduction to bioinformatics:				
	Introduction of bioinformatics, Aim, scope, and research are as of bioinformatics,				
Unit I	use of internet and search engines (WWW, HTML, URLs, Netscape, Explorer,				
	Google, PUBMED) database Management system, database browsing				
Unit II	Biological databases-Sequence and molecular file formats, introduction,				
	Sequence file formats, sequence conversion tools, molecular file formats,				
	Molecular file format conversion sequence alignments, scoring matrices,				
	PAM, BLOSUM, alignment of pairs of sequences, multiple sequence				
	Alignment (MSA).				
Block II	Phylogeny and sequence databases				
Unit III	Molecular phylogeny:				
	Introduction of phenotypic, phylogeny and molecular phylogeny, representation of				
	phylogeny, molecular clocks, methods of phylogeny, statistical evaluation of the				
	obtained phylogenetic.				
	Biological sequence databases:				
	Biological databases, classification scheme of biological databases, biological				
Unit IV	database retrieval systems, national center for biotechnology information (NCBI),				
Unit IV	tool and databases of NCBI, data base retrieval tool, sequence submission to				
	-				
Disalt III	NCBI, Protein detabase Simulation and drug designing				
Block III Unit V	Protein database, Simulation and drug designing				
	Blast, PSO-blast, nucleotide database, protein database, gene expression				
	database, structural database, chemical database, other database, Melagular Simulation and drug designing				
TT.::/ 377	Molecular Simulation and drug designing.				
Unit VI	Protein 3D structure and classification database, protein data base bank,				
	Harnessing data from PDB, data deposition tools, PDB Data, RCSB PDB				

	Structural genomics in formation portal, retrieval of structural data base from		
	MMDB, converted domain database (CDD).		
Sugge	Suggested Text Book Readings:		
1.	Bioinformatics, Principal and Application: Ghosh and Malik, Oxford University Press		
	publication		
2.	Bioinformatics, Principal and Application: Harshwardhan P. Bal, Oxford University Press		
	publication		

- 3. Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, S. C. Rastogi, PHI Publication
- 4. Bioinformatics Sequence and Genome Analysis 2ed: Mount D. W, CBS Publisher
- 5. Introduction to Bioinformatics, Lesk, Oxford University Press publication

Suggested online links:

- 1. Introduction to bioinformatics: <u>bioinformatics (mgcub.ac.in)</u>
- 2. Molecular phylogeny and evolution: <u>PowerPoint Presentation (fh-muenster.de)</u>
- 3. Biological Databases: <u>Biological databases: why? (rlacollege.edu.in)</u>
- 4. Protein databases: <u>Microsoft PowerPoint Protein databases .ppt (amherst.edu)</u>

This course can be opted as an elective by the students of following subjects: NA

Practical work

PGBCH -104 N(P)	Practical's based on PGBCH-101N,102Nand 103N	
PGBCH -109N(P)	Practical's based on PGBCH-106N,107N and 108N	
PGBCH -114N(P)	Practical's based on PGBCH-111N,112N and 113N	
PGBCH-119N(P)	Practical's based on PGBCH-116N, 117N and 118N	
PGBCH-123N(P) Practical's based on PGBCH-120N, 121N and 122N		
Note: The topic of practical will be selected form relevant theory paper as per		
suggestion of relevant faculty members of study centre.		

PGBCH-124(D)N

Dissertation/Industrial training/Internship with Viva Voce

Course Objective:

Project and Dissertation

In second year (fourth semester) of Masters the main objective of the exposure of students' dissertation/Industrial training/ Internship is to elevate their understanding into the practical and experimental aspects of some targeted areas of Biochemistry. This course will develop their analytical ability and it will provide them an apt exposure to work in any research group and will motivate them to execute research in the area of their interest in Bio-chemical sciences.

Course Outcome:

CO-1. Students will be able to plan and strategize a scientific problem, and implement it within a reasonable time frame.

CO-2. It is expected that after completing this project dissertation, students will learn to work independently and how to keep accurate/readable record of assigned project.

CO-3. In addition, students will be able to know biochemical data analysis and their interpretation that will be very helpful for biochemical/biotechnological and pharmaceutical research work.

CO-4. Also, students will be able to become as expert in field of clinical biochemistry, biotechnology, bioinformatics and genetic engineering.

CO-5. Subsequently, the students should be able to critically examine research articles, and improve their scientific writing/communication skills and power point presentation.

For project work and dissertation, the area of the work would be to be decided by the advisor/mentor.

On completion of the project work, students have to submit the work in the form of a dissertation followed by oral presentation in the presence of faculty members.

APPENDIX-II

Guidelines for preparing Research Project/Dissertation is available at link:

http://14.139.237.190/upload_pdf/01_02_2023_Guidelines_fo_Project_Lit_Survey_Dissertation.pdf